• Abrams, M. A. Significance of hydrocarbon seepage relative to petroleum technology and entrapment. Mar. Pet. Geol. 22, 457–477 (2005).

    CAS 
    Article 

    Google Scholar 

  • Carvajal-Ortiz, H. & Gentzis, T. Geochemical screening of supply rocks and reservoirs: The significance of utilizing the correct analytical program. Int. J. Coal Geol. 190, 56–69 (2018).

    CAS 
    Article 

    Google Scholar 

  • Ciotoli, G., Procesi, M., Etiope, G., Fracassi, U. & Ventura, G. Affect of tectonics on world scale distribution of geological methane emissions. Nat. Commun. 11, 1–8 (2020).

    Article 

    Google Scholar 

  • Kennicutt, M. C. Oil and fuel seeps within the gulf of mexico. In Habitats and biota of the Gulf of Mexico: Earlier than the deepwater horizon oil spill, 275–358 (Springer, 2017).

  • Bhagobaty, R. Ok. Hydrocarbon-utilizing micro organism of pure crude oil seepages, Digboi oilfield, northeastern area of India. J. Sediment. Environ. 5, 177–185 (2020).

    ADS 
    Article 

    Google Scholar 

  • Madhavi, T. et al. Gentle hydrocarbons geochemistry of floor sediment from petroliferous area of the Mehsana block, north Cambay basin. J. Geol. Soc. India 74, 7–15 (2009).

    CAS 
    Article 

    Google Scholar 

  • Mani, D. et al. Soil iodine willpower in Deccan Syneclise, India: Implications for close to floor geochemical hydrocarbon prospecting. Nat. Resour. Res. 20, 75–88 (2011).

    CAS 
    Article 

    Google Scholar 

  • Rasheed, M. et al. Identification of hydrocarbon microseepage utilizing hint steel indicators in petroliferous area of south Cambay basin, Gujarat, India. Int. J. Pet. Petrochem. Eng. 1, 12–19 (2015).

    Google Scholar 

  • Rao, P. L. S. et al. Geochemical evaluation of sunshine gaseous hydrocarbons in near-surface soils of kutch-saurashtra: Implication for hydrocarbon prospects. J. Earth Syst. Sci. 122, 55–63 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Minissale, A. A. A easy geochemical prospecting technique for geothermal assets in flat areas. Geothermics 72, 258–267 (2018).

    Article 

    Google Scholar 

  • Argentino, C. et al. Dynamic and historical past of methane seepage within the sw barents sea: New insights from Leirdjupet fault complicated. Sci. Rep. 11, 1–13 (2021).

    Article 

    Google Scholar 

  • Wu, Z. et al. Sedimentary setting and natural enrichment mechanisms of lacustrine shale: A case examine of the paleogene shahejie formation, qikou sag, bohai bay basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 573, 110404 (2021).

    Article 

    Google Scholar 

  • Jones, V. & Drozd, R. Predictions of oil or fuel potential by near-surface geochemistry. AAPG Bull. 67, 932–952 (1983).

    CAS 

    Google Scholar 

  • Patil, D. et al. Close to floor hydrocarbon prospecting in mesozoic kutch sedimentary basin, Gujarat, western India: A reconnaissance examine utilizing geochemical and isotopic strategy. J. Pet. Sci. Eng. 108, 393–403 (2013).

    CAS 
    Article 

    Google Scholar 

  • He, J., Zhang, W. & Lu, Z. Seepage system of oil-gas and its exploration in Yinggehai basin positioned at northwest of south China sea. J. Nat. Fuel Geosci. 2, 29–41 (2017).

    Article 

    Google Scholar 

  • Tedesco, S. A. Ideas of microseepage. in Floor Geochemistry in Petroleum Exploration, 18–31 (Springer, 1995).

  • Nagaeva, Z. & Shagapov, V. S. Elastic seepage in a fracture positioned in an oil or fuel reservoir. J. Appl. Math. Mech. 81, 214–222 (2017).

    MathSciNet 
    Article 

    Google Scholar 

  • Sechman, H., Dzieniewicz, M. & Liszka, B. Soil fuel composition above fuel deposits and perspective buildings of the Carpathian foredeep, SEDD Poland. Appl. Geochem. 27, 197–210 (2012).

    CAS 
    Article 

    Google Scholar 

  • Baklouti, S. et al. Floor geochemical prospection for hydrocarbons within the oriental platform; the case of Guebiba oilfield, Sfax area, Tunisia. J. Pet. Sci. Eng. 159, 830–840 (2017).

    CAS 
    Article 

    Google Scholar 

  • Belt, J. Q. Jr. & Rice, G. Ok. Software of statistical high quality management measures for near-surface geochemical petroleum exploration. Comput. Geosci. 28, 243–260 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Garain, S., Mitra, D. & Das, P. Mapping hydrocarbon microseepage prospect areas by built-in research of aster processing, geochemistry and geophysical surveys in Assam-Arakan fold belt, NE India. Int. J. Appl. Earth Observ. Geoinform. 102, 102432 (2021).

    Article 

    Google Scholar 

  • Madhavi, T., Kalpana, M. S., Patil, D. J. & Dayal, A. M. Proof for a relationship between hydrocarbon microseepage and hint steel anomalies: An implication for petroleum exploration. Geosci. J. 15, 197–206 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Radha, B. A., Rao, P. S., Rasheed, M., Patil, D. & Dayal, A. Software of hint steel anomalies for recognition of petroleum prospects in floor sediments of Kutch and Saurashtra basins, India. J. Geol. Soc. India 80, 802–812 (2012).

    Article 

    Google Scholar 

  • Jiao, W. et al. Software of hint components within the examine of oil-source correlation and hydrocarbon migration within the Tarim basin, china. Power Explor. Exploit. 28, 451–466 (2010).

    CAS 
    Article 

    Google Scholar 

  • Rasheed, M. et al. Geochemical evidences of hint steel anomalies for locating hydrocarbon microseepage within the petroliferous areas of the tatipaka and pasarlapudi areas of Krishna Godavari basin, India. Pet. Sci. 10, 19–29 (2013).

    CAS 
    Article 

    Google Scholar 

  • Rasheed, M. A., Lakshmi, M., Srinu, D. & Dayal, A. M. Micro organism as indicators for locating oil and fuel reservoirs: A case examine of the Bikaner-nagaur basin, Rajasthan, India. Pet. Sci. 8, 264–268 (2011).

    CAS 
    Article 

    Google Scholar 

  • Wagner, M., Wagner, M., Piske, J. & Smit, R. Case histories of microbial prospection for oil and fuel, onshore and offshore in northwest Europe. AAPG Stud. Geol. 48, 453–479 (2002).

    Google Scholar 

  • Pixler, B. O. Formation analysis by evaluation of hydrocarbon ratios. J. Petroleum Technol. 21, 665–670 (1969).

    CAS 
    Article 

    Google Scholar 

  • Kumar, M. & Borgohain, R. Palynofacies evaluation and depositional setting of Bihpuria well-a, north financial institution of Brahmaputra river, higher Assam basin. J. Geol. Soc. India 65, 70–82 (2005).

    Google Scholar 

  • Bernard, B., Brooks, J. M. & Sackett, W. M. A geochemical mannequin for characterization of hydrocarbon fuel sources in marine sediments. In Offshore Expertise Convention (OnePetro, 1977).

  • Hitchman, S., Darling, W. & Williams, G. Steady Isotope Ratios in Methane Containing Gases in the UK (Springer, 1990).

    Google Scholar 

  • Vigneron, A. et al. Microbial and isotopic proof for methane biking in hydrocarbon-containing groundwater from the Pennsylvania area. Entrance. Microbiol. 8, 593 (2017).

    Article 

    Google Scholar 

  • Devi, A., Boruah, S. & Gilfellon, G. Geochemical characterization of supply rock from the north financial institution space, higher Assam basin. J. Geol. Soc. India 89, 429–434 (2017).

    CAS 
    Article 

    Google Scholar 

  • USGS. Usgs topographic maps. (2020).

  • Chakrabarty, S., Gorai, D., Shukla, M. & Uppal, S. Excessive decision sequence stratigraphy and its implication in combined siliciclastic carbonate sequence: A case examine from early to center eocene sylhet formation, Assam and Assam-Arakan basin, India. In 2018 AAPG Worldwide Convention and Exhibition.

  • Hunt, J. M. Petroleum Geochemistry and Geology (Springer, 1995).

    Google Scholar 

  • Naidu, B. & Panda, B. Regional supply rock mapping in higher Assam shelf. In Proceedings of the Second Worldwide Petroleum Convention and Exhibition, PETROTECH-97, vol. 1, 350–364 (1997).

  • Dasgupta, A. & Biswas, A. Geology of Assam: Geological Society of India. (Springer, 2000).

  • Saha, D. Built-in evaluation of gravity and magnetic knowledge within the higher assam shelf and adjoining schupen belt space: A crucial overview. In The 2nd South Asian Geoscience Convention and Exhibition, GEOIndia2011 (2011).

  • Akhtar, S. et al. Structural model and deformation historical past of Assam & Assam Arakan basin, India: From built-in seismic examine. In Tailored from oral presentation at AAPG Annual Conference, Denver, Colorado, June, vol. 7 (2009).

  • Singh, N. Permeability prediction from wireline logging and core knowledge: A case examine from Assam-Arakan basin. J. Pet. Explor. Prod. Technol. 9, 297–305 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Google earth. Gohpur, Assam.26.8904771,93.5745129, 12487m. Mapdata 2021. http://www.earth.google.com (2021).

  • Hunter, J. D. Matplotlib: A 2nd graphics setting. Comput. Sci. Eng. 9, 90–95. https://doi.org/10.5281/zenodo.3948793 (2007).

    Article 

    Google Scholar 

  • Frey, B. J. & Dueck, D. Clustering by passing messages between knowledge factors. Science 315, 972–976. https://doi.org/10.1126/science.1136800 (2007).

    ADS 
    MathSciNet 
    CAS 
    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Scikit. Scikit be taught builders, affinity propagation. https://scikit-learn.org/secure/modules/clustering.html#affinity-propagation. Accessed 10 Jul 2020.

  • Zhou, S.-G., Zhou, Ok.-F. & Wang, J.-L. Geochemical metallogenic potential based mostly on cluster evaluation: A brand new technique to extract priceless data for mineral exploration from geochemical knowledge. Appl. Geochem. 122, 104748 (2020).

    CAS 
    Article 

    Google Scholar 

  • Cai, C. et al. Chemical and isotopic proof for secondary alteration of pure gases within the Hetianhe discipline, Bachu uplift of the Tarim basin. Org. Geochem. 33, 1415–1427 (2002).

    CAS 
    Article 

    Google Scholar 

  • Pytlak, L. J. Origin, migration and alteration of hydrocarbons within the Austrian sector of Alpine Foreland Basin. Ph.D. thesis, College of Leoben (2017).

  • Prescott, C. E. & Vesterdal, L. Decomposition and transformations alongside the continuum from litter to soil natural matter in forest soils. For. Ecol. Manag. 498, 119522 (2021).

    Article 

    Google Scholar 

  • Regenspurg, S. et al. Speciation of naturally-accumulated uranium in an organic-rich soil of an alpine area (Switzerland). Geochim. Cosmochim. Acta 74, 2082–2098 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Vodyanitskii, Y. N. Chemical elements of uranium conduct in soils: A overview. Eurasian Soil Sci. 44, 862–873 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 



  • Supply hyperlink